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Abstract. In this paper we investigate the dynamics of the Lipkin-Meshkov-Glick model within 
the context of q u a n m  algebras. For this purpose we obtain the equations of motion with the 
help of the timedependent variational principle. To analyse the results graphs for equienergies, 
potentials and meanquare deviation of the 3, operator have been plotted. Modifications in 
the usual libration and rotational motions due to the introduction of quantum deformation are 
discussed. 

1. Introduction 

Recently, the study of q-deformed models has received much attention in the literature. 
Investigations  are^ made either from the mathematical point of view 111 or concerning 
possible applications to physical systems [Z]. The final aim of these works consists of 
finding a physical meaning for the deformation procedure and, in this way, show the range 
of validity and applicability of these models in physics. 

Some toy models have already been investigated within the context of quantum algebras. 
Examples of such studies are the effects of the deformation parameter on the phase 
transition from the vibrational to the rotational regime in the su(Z) Lipkin model [3], in the 
su(2)8su(Z)  Moszkowski [4] and Pairing models [5], and in the Thouless superconductivity 
model [6]. For a fixed number of particles in systems described by the models above, it was 
shown that the phase transition may occur more rapidly, i.e. for weaker interaction strength 
or even be~suppressed, depending on the deformation taken. 

Not much has been done towards the investigation of the dynamics of pseudo-spin 
q-deformed models. It is particularly interesting to investigate the role of the q-deformation 
on the dynamics of such models in the mean-field approximation. As a very useful laboratory 
system to study pseudo-spin models, we investigate the Lipkin-Meshkov-Glick model [7] in 
the context of quantum algebras through the use of the timedependent variational principle 
(TDVP). Recently, it has been shown that when q-deformed coherent states for the su,(Z) 
(the quantum algebra counterpart of su(2)) are introduced in the TDVP it yields a generalized 
Hamiltonian dynamics [XI in complete analogy with the non-deformed case. . , 

In this paper we exploit these results trying to keep, as far as possible, paramerrizations 
that are akin to the ones used in the non-deformed 'case, i.e. we take the usual 
representative parametrizations of the coset S U ( Z ) / U ( I )  and develop the formalism for the 
quantum-deformed time-dependent Hartree-Fock method applying it to the Lipkin model. 
Furthermore we investigate the role of the deformation parameter on the time evolution of 
relevant ohservables within the time-dependent Hatree-Fock context. 
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2. Quantum algebraic description of the TDBF and its equations of motion 

S S Avancini et al 

Before introducing the formalism itself, we have to define some important quantities related 
to the suq(2) algebra, whose generators obey the following commutation relations: 

where 

and q is the deformation parameter such that when q + 1, [x] = x. The above operators, 
when applied to a basis I jm) of the carrier space V j  of the representation Tj of .TU&), 

yields 

J,[jm) = mljm) 

w i t h m = - j , - j + l , _ . _ ,  j a n d j = O  7 1 1  2' .... 
J+[jm) = J [ j  ~ m ] [ j + m +  l l l jmf 1) 

The q-analogues of the su(2) coherent states [9,10] are given by 

l z ) = e p l j - j )  (3) 

where the q-exponential is given by 

with [m]! = [m][m - 11.. . [l]. Notice that lz) is a state belonging to the suq(2) space V j  
and its normalization is 

where the q-binomial is given by 

with 

We also need to define the suq(2) operators in the Bargmann space [I I]: 

(zit) (zlJ+[@) = (-q-'jz2DZ + [Z~IZL~-L) (ZI@)  

(zlJ-l@) = &(zI@I) 

where I@) is an arbitrary state in the space V j ,  

(7) 
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is the q-derivative and 

Lq-lf(Z) = f Wiz) 

In pseudo-spin models j is related to the number of particles N considered in the system. 
At this point we return to our original problem. To obtain the equations dmotion of a 

determined system, one has to use the TDVP for an action functional, i.e. 
c B 

where the Lagrangian density is defined in terms of coherent states [12]: 

where 

and the coherent state lz) is actually I&)), i.e. it is a function of the time. . 
From (9), it is straightforward to obtain a set of coupled equations written in a 

generalized canonical form. They read 

where 

Defining the generalized Poisson bracket aS in [SI, 

where { A ,  B] is the usual Poisson bracket, 

equations (1 1) can be rewritten as 

z = (Iz, KlI(E2) 2 = ( ( 2 ,  Ull(ZE)~ (15) 

In the non-deformed case, the z-parametrization corresponds to one of the traditional 
representations of the coset of S U ( Z ) / U ( l ) .  It is also possible to find other representations 
for the same coset [13,14], and they are related-to each other through transformations that 
preserve the symplectic structure obtained within the context of the TDVP. 

As long as we seek a physical interpretation for the deformation parameter, it is 
convenient to work with these usual representations, even in the deformed case. As can 
be seen below, they also preserve the symplectic smcture generated by the TDVP in the 
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deformed case. Thus, for further convenience, we parame~ze  the complex number z in 
two of these ways we have just mentioned. For our first choice we utilize the (e,$) 
representation, used throughout even when deformed systems are under consideration [3,5]. 
In this case 

S S Avancini et a1 

e z = tan-e'+ 
2 

where 0 E [0, n ]  and @ E  [O, 2x1. With this paramelxization (1.5) becomes 

6 = ((0, WI(O.+) 4 = tI4, xII(e.4) 

where 

and 

which is related to g(z. Z) through 

we also utilize another representation, i.e. the (p , j )  (or equivalently (x,p)) 
representation [15,16]. In the non-deformed case this representation leads to the usual 
Hamilton equations. For this reason its real and imaginary part can be associated with a 
canonical pair ( x ,  p )  where 

p = (x  + ip)/l/2, 
It is straightforward to prove that the ( x ,  p )  parametrization allows a good definition for 
the classical potential energy, as the limit of the mean value of the Hamiltonian over the 
coherent states when p goes to zero. The minimum of this potential gives the Hartree-Fock 
minimum [16]. The p parametrization is given by z = p/(1 - pfi)'/z. In this case, the 
Lagrangian reads 

C. = f i a ( p j ) ( j B  - ~ i p )  - ~ ( p ,  j) (20) 

where 

and the equations of motion given in (15) become 

where the deformed Poisson bracket is 
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and 

In analogy with (19) we can prove that 

From~(23) we see that, in the deformed case, the B representation carries a measure in front 
of the usual Poisson bracket. However the q-deformed Poisson bracket becomes the usual 
one whenever q = 1. 

3. Application to the Lipkin-Meshkov-Glick (LGM) model 

The LMG model [7] has often been used because it has many important physical features 
present in realistic models and at the same time is a relatively simple, non-kivial and exactly 
solvable model. It is a valuable tool to analyse approximations and methods for many-body 
systems and to study critical phenomena in pseudo-spin systems. Particularly important 
to this work are the time-dependent Hartree-Fock studies [14,17]. Even in the deformed 
regime the LMG model is exactly solvable and has already been used to test the variational 
approach for the static case through a numerical comparative study, which produces very 
good results [3]. 

The LMG model describes a two N-fold degenerate level system with energies i c  and 
-&, respectively. The states in the upper level are denoted by the quantun numbers 
i = 1,. . . , N ,  the states in the lower level by -i. 

The many-body LMG Hamiltonian is 

N N 

i d  ;,?=I 
H = $6 X(U/U~ - ufia-i) + 2 1 V (0, t t  a,p-ia-i, ~ + u&-;&w) t t  

where U, t t  (a-i) creates a particle in the upper (lower) level, ai (U-;) annihilates a particle in 
the upper (lower) level and V is the strength of the interaction. The Hamiltonian in terms 
of the pseudo-spin operators is given by 

(26) v 2 ~ 2  H = €JZ + -(J+ + J-)  
2 

with 

The above operators obey the pseudo-spin algebra of su(2). The operators J+ are particle- 
hole and hole-particle excitation operators, while J, is related to the number of excited 
particle-hole pairs (half the difference between occupied states in the upper and lower 
levels). In the expressions above and below, j = N/2.  ,~ 
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The q-deformed version of the LMG model is obtained through a deformation of the 
pseudo-spin algebra, being the resulting suq(2) algebra shown in the last section. In order 
to apply the deformed TDVP formalism developed so far to the Lipkin model, we start with 
the definition of the deformed Lipkin density Hamiltonian, which is 

where x = V[N]/€. At this point, both parametrizations mentioned in the last section are 
introduced. With the (0, 4)  parametrization, equation (27) becomes [3] 

(28) N 90 x . z  x($, 4)  = -- + Sin--B~(o) + -Sin 0 C O S ~ ~ ~ N ( @ )  
2 2 4 

with 

B ~ ( e )  = 2 N-I-zcos2(e/z) + sinz(0/2) k=O 4 

[N - 11 
(cosZ(0/2) + q-N+lsinz(8/2)) (cos2(0/2) + qN-’sin2(0/2)) ‘ 

1 N-1 

(29) 
cN(’9) = 

Substituting the q-deformed LMG Hamiltonian in (16) and performing the required 
manipulations, we obtain 

and 

With the second parametrization we obtain for the Lipkin Hamiltonian the expression 

where B is defined in (21) and 

It is also possible to write the Hamiltonian in terms of the pair ( x ,  p ) ,  yielding 
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In this representation it is possible to define the potential V ( x )  

N x 2  
2~ 2 2 V(X)  = -- + --a(x, 0) + - 
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(35) 

such that its minimum corresponds to the Hartree-Fock minimum even in the deformed 
case. 

Since we are interested in observing the influence of the q-deformation over the number 
of excited p;nticlehole pairs, we analyse the fluctuation of the J2 operator defined by 

where 

with 

where, 

After simple manipulations,  equation^ (36) becomes 

. . It is straightforward to obtain the expression above in the (e, 6 )  or ( x ,  p )  parametrization. 

4. Results and conclusion .~ 

Our aim in this work is to investigate the effects of the'q-deformation on the mean-field 
dynamics. Gross features of these effects can be seen through the analysis of the solutions 
of the equations of motion, or equivalently the analysis of the equi-energies. In order to 
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Figure 1. E(B.4)  is platted for q = 1. 1.1 and 1.2 for N = 30 and x = 0.25 (first columm) 
and x = 2.5 (second column). 

analyse the behaviour of the q-deformed Lipkin system, we have drawn several curves. In 
all of them N = 30 particles. 

To start with, we have plotted the equi-energies E(Q,  @), obtained from (28), in figure 1 
for q = 1, 1.1 and 1.2. For this parametrization, the behaviour of the system can be 
compared with the one shown in [17]. For the interaction strength x = 0.25 (smaller than 
xCritiwl = 1, which is the critical value for the non-deformed LMG model) we have the 
same qualitative behaviour as in the original system, i.e. for q not very far from q = 1, 
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Figure 2. E ( x ,  p )  is plolted for q = 1. 1.1 and 1.2 for N = 30 and x = 0.25 (first column) 
and x = 2.5 (second column). 

the trajectories are not closed. This behaviour is interpreted as rotational motion in the 
non-deformed case. As q increases, the amplitude in the 0 direction decreases and, as we 
shall discuss below, this behaviour reflects non-physical features introduced by large values 
of q. For the interaction strength x = 2.5 we observe some closed trajectories as long as q 
remains close to 1, behaviour which is associated with the librational motion. As q increases, 
the closed trajectories begin to disappear and a prevalence of open trajectories takes place. 

With the ( x .  p )  representation the physical content of the equi-energies can be 
understood in a more transparent way. In figure 2, we have plotted E ( x ,  p )  from (34) 
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again for q = 1 ,  1.1 and 1.2. When x = 0.25, all trajectories surround the minimum at 
( x  = 0, p = 0) and again they correspond to the the rotational motion. For x = 2.5, we see 
two minima localized along the line p = 0 and also a local maximum at x = 0. The curves 
around each minimum correspond to the librational motion, while the others encircling both 
minima and the local maximum are related to rotation. Furthermore, we can see that both 
minima approach each other with the increase of q and trajectories that used to surround 
just one minimum begin to surround the two minima (even when the initial conditions are 
the same). In other words, we claim here that the librational motion may be trasformed into 
rotational motion, which is the motion that prevails for larger deformation parameters. 

In figures 3 and 4 we have plotted the potential V ( x )  written in (35) for x = 0.25 and 
2.5, respectively, for q in the range {1,1.8}. When x = 0.25, just one minimum is obtained 
and the potential becomes steeper with the increase of q. When x = 2.5 the two minima 
get closer when q increases and tend to one minimum limit. This continuous transition has 
already been pointed out in static Hartree-Fock studies [3] where the LMG phase transition 
is suppressed after a critical value of q for a given N. 

E w e  3. We show the vaiation of 
the potential V ( x )  with the deformation 
parameter for N = 30 a d  x = 0.25. 

F i y m  4. The same as in figure 3, but 
for x = 2.5. The gradual change from n 
two minima to a one minimum potential 
is clearly displayed. 

A microscopic view of the time evolution of particle-hole excitations can be seen 
through the analysis of the fluctuations of the Jz operator, i.e. the AJz, defined in (39). In 
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figure 5, AJz has been plotted against time for a fixed value of deformation q =~1.1 and 
different number of particles. All the curves are associated with trajectories with the same 
value of energy per number of particles E / N  = -0.51. The system suffers a slight change 
with the variation of the number of particlei, which means that f o r ~ a  fixed deformation 
parameter the physics underlying the system is qualitatively maintained as N increases. 

2.00 - 

~ 1 . 5 0  - 

1.00- 

0.00 .I _- 
0.00 ~ 2.h 4.m 5 00 ea0 

t 

3.00 1 

Figure 5. AJz is plotted against time 
for N = 30 (full curve), 50 (short 
broken curve), SO (broken curve) and 
100 (dotted curve) for fixed values of  
x = 2 . 5 . ~ ~  = 1.1 and E I N  = -0.51 
(energy per patticle). 

Figure 6. AJz is plotted against'time 
for q = I (full curve), 1.05 (broken 
c u m )  and I .5 (short broken curve) with 
the number of particles N = 30 and the 
interaction strength x = 0.25. 

aoo 0'50L 0.00 2.00 t 4.00 0.00 800 
.~ 

In figures 6 and 7, AJ, is plotted, respectively for x = 0.25 and x = 2.5 and v ~ o u s  
values of q. It can be seen that beyond a certain critical q (in this case q =~ 1.5) the system 
tends to oscillate around the same point (it is actually nearly stationary), which leads us to 
conclude that the number of particlehole excitations becomes almost fixed independently of 
the interaction strength, the number of particles, the time evolution and the initial conditions. 
In this case, the deformation parameter completely dominates. the scenario, causing a weird 
unphysical feature. T Q  behaviour is directly related to the decrease of the ,amplitude in 
the theta direction observed in the (e. 4) equi-energies mentioned above. 
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3.00 7 

U 
3 a 

0.00 2.00 4.00 6.00 a.m 
t 

Figure 7. AJ, is plotted against time 
for q = 1 (full curve), 1.05 (broken 
curve) and 1.5 (short broken curve) with 
the number of particles N = 30 and the 
interaction strength x = 2.5. 

Finally we conclude that when q t 1 the suppression of the phase transition already 
observed in static calculations [3, IS] is also reflected in the dynamics of the system. Even 
for values of q not very far from 1 the dynamical changes introduced by the deformation 
transform typical librational trajectories into rotational ones depending only on the number 
of particles. Nevertheless it should be stressed that for q larger than a certain critical value, 
it destroys all the physical content of the system and hence becomes meaningless. 

Although we have used the LMG mode1 in this work, it is important to point out that 
our technique can be extended to any q-deformed pseudo-spin model. 
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